
Three ways

1. Increase/decrease pulse to vary the velocity at which the 

end effector reaches its target.

2. Sustain the tonic target activation level for an extra N 

pacemaker ticks, increasing prominence

3. Learn a pulse step sequence that goes from phone A to 

phone C but passes through sensory locus of phone B e.g. 

a syllable plan (see Sosnik [9]), reducing prominence.
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We are proposing that discrete pulse step signals descend 

from the motor cortex (MC) to set muscle activation levels. 

Discrete MC control models are rare but not unknown e.g. 

the bang-bang control model by Lieb et al [1].

MethodMethodMethodMethod

DiscussionDiscussionDiscussionDiscussion

A co-registered EMA and ultrasound single speaker dataset 

was used to estimate keypoints along the entire tongue 

surface. Contraction and extension of 5 points along the 

tongue body plus a point on the tip were measured relative 

to the short tendon. Lip closure distance between EMA coils

HypothesisHypothesisHypothesisHypothesis
It is known that individual hypoglossal neurons respond to 

oscillatory input with increased spiking and fire with greater 

temporal precision when the input is delivered at the 

“preferred” frequency of the cell [3]. We hypothesise the 

existence of a rhythmic cortical or cerebellar pacemaker 

that phase-locks each pulse and step.

If there is a rhythmic pacemaker, how might If there is a rhythmic pacemaker, how might If there is a rhythmic pacemaker, how might If there is a rhythmic pacemaker, how might 
local prominence work?local prominence work?local prominence work?local prominence work?

Summary of response patterns for different populations of neurons during

generation of flexion and extension torques at the wrist.

CM corticomotoneuronal cells

RM rubromotoneuronal cells

DRG premotor afferents in dorsal root ganglia

PreM-IN spinal premotor interneurons

Sy-IN spinal interneurons with synchrony effects

U-IN spinal unidentified interneurons

MU motoneurons

E.E. Fetz et al. / Brain Research Reviews 40 (2002) 53–65
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The bulb blew when he (fw)switched on the light. The bulb blew when he switched on the light.
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6.095seconds

Isn’t this the equilibrium point Isn’t this the equilibrium point Isn’t this the equilibrium point Isn’t this the equilibrium point λλλλ model?model?model?model?
It shares Feldman’s concept [2] that motor commands adjust 

motoneuron (MN) activation threshold levels and spindle or 

mechanoreceptor afferents activate MNs according to the 

threshold.

Key differences

1. Simple tonic  final position control but with an initial 

phasic pulse that determines velocity. 

2. The apparent continuous nature of  λ is due to  inhibitory 

interneurons within and between motor nuclei which 

delay MN activation by briefly, reciprocally, suppressing 

MN threshold levels.

3. Cerebellum compares (lagging) sensory input with 

memory of efference copy of MC neuron output. 

Difference between expected and actual sensory input 

adjusts MN activation levels after >100ms.

was also measured. A vertical grid was then manually fitted 

so that it best aligned with peaks and troughs of the 

measures. A single utterance with two repetitions of  a 

sentence is analysed in this presentation. The first  repetition 

includes a disfluency.

DatasetDatasetDatasetDataset
220 phonetically balanced sentences recorded by a male 

Scottish English speaker 50-60yrs. Synchronous 

instrumentation included 22kHz audio, Carstens AG501 EMA, 

4 tongue sensors, upper/lower lip, jaw sensors. MicrUS 81Hz 

midsagittal Ultrasound. 60Hz head stabilised lip video . 

ObservationsObservationsObservationsObservations

1. Rhythmic ticks of period 53.8ms align with the same 

acoustic landmarks in both repetitions and with initiation 

of many if not all articulatory transitions.

2. Most phone transitions take two ticks (107.6ms)

3. After the disfluency, in the /tS/ segment, there appears to 

be a half-tick jump. Then another half-tick jump in the 

pause between repetitions (indicated by red grid  ||||||).

4. /u/ in “blew” reduced in duration by 2 ticks in second rep.

[u] 4 ticks

We have used carefully designed novel measures of 

genioglossus contractions rather than traditional EMA sensor 

tangential velocity measures, taking the analysis a step closer 

to the underlying motor commands. 

Evidence of an underlying pacemaker presented here is 

subjective and still exploratory. We have not yet found a 

means for automated detection of a pacemaker.

Similar tick periods are observed in other recordings by this 

speaker in the dataset. Mean=54.0ms  s.d.= ±0.3ms   N=11

Cortical oscillatory entrainment of single hypoglossal motor 

units has been observed, by means of a correlation with 

electroencephalography (EGG), to peak at around 20Hz [8] 

which matches the rate discovered here. 

It should be noted that the pulse step model is compatible 

with, rather than a competitor to, the DIVA speech 

production model [10].

Cerebellum
Outputs error between expected (lagging) sensory 

input for given cortical activation. Slowly adapts to 

expect new sensory values if prevailing conditions 

change.
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golgi tendon organs[6].
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