Savitzky-Golay

Define window size in ms. Full window is 2*window size+1

Apply the quadratic (m=2) function or quartic (m=4) as a sliding window along the time series to be smoothed.
The wider the window the poorer thew time resolution

m=2 m=4

1.5 1.5

0.5

05 0 0.5 1

. Frequency response of Savizky-

40 Golay filters

30

20 —m=2
10 —

0 .

1 4 710131619222528313437404346495255586164

Convolve window with time series.

—Window<J—>0<J—> +window

¥AaN

e N L e




procedure TdlgData3DFilter.FilterDataSavGol(var ProcessedArray: TProcessedPosRecArray); //Savitsky-Golay generalised moving
average filter that convolves a polynomial with the signal to smooth (low pass filter)
var n,a: single;

m4: boolean; // The window size defines the cutoff frequency of the low-pass filter
procedure AddSample(j,t,dt: integer); // The total length of the filter window must be a positive odd integer
// less than the length of the TimeSeries
var w: single; //m2 = quadratic polynomial m4 = quartic polynomial
begin //all times measured in ticks (100,000 ticks per second)
w:=(ProcessedArray[j].time - t)/dt; // calculate w (window time) as a fraction of the window size
//(i.e. to lie in the range 0 to 1)
if m4 then
w:=-4.45*sqr(w)+3.83*sqr(sqr(w))+1 //calculate the quartic window weight
else
w:=-1.58*sqr(w)+1; // or calculate the quadratic window weight
a:=a+ProcessedArray[jl.a*w; //apply the weight
n:=n+w;
end;

var i,j,t,dt: integer;
ProcessedArray2: TProcessedPosRecArray;
begin
ProcessedArray2:=copy(ProcessedArray);
dt:=seWidth.Value*TicksPerSec div 1000; //sewidth is window size in ms
// sewidth of 1ms = 1*100,000/1000 = 100ticks

m4:=rbM4.Checked;
for i:=low(ProcessedArray) to high(ProcessedArray) do //ProcessedArray contains signal times series to be filtered

begin
n:=1;
a:=ProcessedArrayli].a; //signal amplitude
t:=ProcessedArrayli].time; //frame timestamp in ticks (in AAA samples are not forced to be

//evenly spaced in time although they mostly are).
j=i-1;
while (j >= low(ProcessedArray)) and (ProcessedArray[j].time >=t-dt) do //Filters forward in time. Does not filter samples that are

less than the specified window width (in ms) from the sample being smoothed
begin //i.e. applies the left side of the symmetric window function

AddSample(j,t,dt);
dec(j);
end;

ji=it;
while (j <= high(ProcessedArray)) and (ProcessedArray[j].time <= t+dt) do //Filters backward in time. Cannot filter samples that are

more than the specified window width (in ms) from the sample being smoothed
begin //i.e. applies right side of the symmetric window function

AddSample(j,t,dt);
inc(j);
end;
ProcessedArray2[i].a:=a/n; //divide by cumulative weight total so as not to change the amplitude.
end;

move(ProcessedArray2[0],ProcessedArray[0],sizeof(ProcessedArray[0])*length(ProcessedArray));

PosVelAcc(ProcessedArray);
end;



