
Savitzky-Golay

Define window size in ms. Full window is 2*window size+1

Apply the quadratic (m=2) function or quartic (m=4) as a sliding window along the time series to be smoothed.

The wider the window the poorer thew time resolution

Convolve window with time series.

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

m=2

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

m=4

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Frequency response of Savizky-

Golay filters

m=2

m=4

i

j
-window +window

0 j

procedure TdlgData3DFilter.FilterDataSavGol(var ProcessedArray: TProcessedPosRecArray); //Savitsky-Golay generalised moving

average filter that convolves a polynomial with the signal to smooth (low pass filter)

var n,a: single;

 m4: boolean; // The window size defines the cuto� frequency of the low-pass filter

 procedure AddSample(j,t,dt: integer); // The total length of the filter window must be a positive odd integer

 // less than the length of the TimeSeries

 var w: single; //m2 = quadratic polynomial m4 = quartic polynomial

 begin //all times measured in ticks (100,000 ticks per second)

 w:=(ProcessedArray[j].time - t)/dt; // calculate w (window time) as a fraction of the window size

 //(i.e. to lie in the range 0 to 1)

 if m4 then

 w:=-4.45*sqr(w)+3.83*sqr(sqr(w))+1 //calculate the quartic window weight

 else

 w:=-1.58*sqr(w)+1; // or calculate the quadratic window weight

 a:=a+ProcessedArray[j].a*w; //apply the weight

 n:=n+w;

 end;

var i,j,t,dt: integer;

 ProcessedArray2: TProcessedPosRecArray;

begin

 ProcessedArray2:=copy(ProcessedArray);

 dt:=seWidth.Value*TicksPerSec div 1000; //sewidth is window size in ms

 // sewidth of 1ms = 1*100,000/1000 = 100ticks

 m4:=rbM4.Checked;

 for i:=low(ProcessedArray) to high(ProcessedArray) do //ProcessedArray contains signal times series to be filtered

 begin

 n:=1;

 a:=ProcessedArray[i].a; //signal amplitude

 t:=ProcessedArray[i].time; //frame timestamp in ticks (in AAA samples are not forced to be

 //evenly spaced in time although they mostly are).

 j:=i-1;

 while (j >= low(ProcessedArray)) and (ProcessedArray[j].time >= t-dt) do //Filters forward in time. Does not filter samples that are

less than the specified window width (in ms) from the sample being smoothed

 begin //i.e. applies the left side of the symmetric window function

 AddSample(j,t,dt);

 dec(j);

 end;

 j:=i+1;

 while (j <= high(ProcessedArray)) and (ProcessedArray[j].time <= t+dt) do //Filters backward in time. Cannot filter samples that are

more than the specified window width (in ms) from the sample being smoothed

 begin //i.e. applies right side of the symmetric window function

 AddSample(j,t,dt);

 inc(j);

 end;

 ProcessedArray2[i].a:=a/n; //divide by cumulative weight total so as not to change the amplitude.

 end;

 move(ProcessedArray2[0],ProcessedArray[0],sizeof(ProcessedArray[0])*length(ProcessedArray));

 PosVelAcc(ProcessedArray);

end;

